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We consider the mechanisms that enable decisions to be post-
poned for a period after the evidence has been provided. Using an
information theoretic approach, we show that information about
the forthcoming action becomes available from the activity of
neurons in the medial premotor cortex in a sequential decision-
making task after the second stimulus is applied, providing the
information for a decision about whether the first or second
stimulus is higher in vibrotactile frequency. The information then
decays in a 3-s delay period in which the neuronal activity declines
before the behavioral response can be made. The information
then increases again when the behavioral response is required. We
model this neuronal activity using an attractor decision-making
network in which information reflecting the decision is maintained
at a low level during the delay period, and is then selectively
restored by a nonspecific input when the response is required. One
mechanism for the short-term memory is synaptic facilitation,
which can implement a mechanism for postponed decisions that
can be correct even when there is little neuronal firing during the
delay period before the postponed decision. Another mechanism
is graded firing rates by different neurons in the delay period,
with restoration by the nonspecific input of the low-rate activity
from the higher-rate neurons still firing in the delay period. These
mechanisms can account for the decision making and for the
memory of the decision before a response can be made, which are
evident in the activity of neurons in the medial premotor cortex.
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An important aspect of decision making is that actions must
often be delayed after the information for the decision has

been provided. We examine the mechanisms that underlie this in
a well-known paradigm because research in decision-making is
the comparison of two vibrotactile stimuli (f1, f2) applied to the
fingertips with a fixed delay period between them (1–8). To
perform this cognitive task, the subject needs to store in working
memory the information about the first stimulus, f1, and to
compare it with the second stimulus, f2, to make the decision of
whether f1 < f2 or f1 > f2, and report it immediately after the f2
stimulus is released. Romo and coworkers (1–8) have analyzed
neuronal activity in this paradigm. They have found that the
activity of one type of neuron in a number of cortical areas is
correlated with f1 during its presentation [in the primary so-
matosensory cortex (S1), the secondary somatosensory cortex
(S2), the ventral premotor cortex (VPC), the prefrontal cortex
(PFC), and the medial premotor cortex (MPC)] and also during
the delay period (in all of the previous brain areas except for the
S1). During the presentation of f2 they have identified three
different types of neurons: neurons with firing correlated with f1;
neurons with firing correlated with f2; and neurons with firing
correlated with the sign of the difference between f1 and f2,
which we denote (f1 > f2) and (f2 > f1) and which reflect which of
these decisions is taken.
To extend the analysis of the mechanisms underlying deci-

sions, which sometimes cannot be made immediately after the
evidence is provided, Lemus et al. (3) introduced an additional

delay between the second stimulus and the subject’s response.
This unique operation requires the subject to store in working
memory the decision during the second delay period. The
authors recorded the activity of neurons in the MPC, and found
some neurons that reflected the decision throughout the delay
period before the response could be made [e.g., figure 2B in
Lemus et al. (3)]. To understand further the information about
the decision carried by the neurons, Lemus et al. (3) made use of
a linear regression model between the firing rates and the fre-
quencies of the f1 and f2 stimuli: rates (t) = a0(t) + a1(t) f1 +
a2(t) f2. They analyzed the significance of a1, a2, or a1−a2 (1–8) to
understand the role of the neuron: if a1 is significant, the neuron
encodes f1; similarly, a2 relevant implies the neuron encodes f2;
in the particular case in which a1 = −a2, the neuron is called a
differential neuron, and it encodes the decision motor report.
Lemus et al. (3) found neurons that in the postponed response
delay period had firing rates that were correlated with the fre-
quency of the f1 stimuli and/or the f2 stimuli, as well as with the
motor response. They suggested that the neurons that reflect the
sensory stimuli in the postponed response delay period enable
the subject to revise the report and thus allow for a change in the
initial decision.
In this paper, we use a different approach to the linear re-

gression model to analyze the nature of the activity in the
postponed response delay period. We measure the mutual in-
formation (MI) between the neuronal activity and the postponed
response, which takes into account the variability of the firing
(9–12), and apply this to understanding neuronal activity in the
MPC recorded in the same paradigm as Lemus et al. (3). We
wished to measure the information in the firing rates during the
delay period. To do so, we computed the MI between the vari-
ables “firing rate” and “category of response” (i.e., f1 < f2 or f1 >
f2) throughout the 3-s delay period in which the response is being
postponed. For the population of neurons with significant in-
formation during the second stimulus (f2), when the evidence
required to make the decision is available, many of the neurons
have low information during the delay period after f2 before the
postponed response can be made, but recover the information
when the response must be made, as illustrated in Fig. 1B. We
propose here that the information can be recovered by a non-
specific input applied at the time of the response, and demon-
strate this with two models. In one model, synaptic facilitation
(SF) (13–15) occurring in the postponed response delay period
allows the memory to be maintained with little firing, and little
information from the firing, in the delay period. In a second
model, graded firing rates in the attractor decision-making net-
work (16) in the delay period allow the faster-firing neurons to
maintain sufficient firing and information in the delay period so
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that the nonspecific recall cue can activate these and the lower-
firing neurons in the same attractor network to their full in-
formation value when the behavioral response is required at the
end of the delay period.

Results
Information in the Neuronal Activity of Medial Premotor Cortex
Neurons. The activity of a single MPC neuron in the postponed
response delay task is illustrated in Fig. 1 A and B. The monkeys
(Macaca mulatta) were trained to discriminate in frequency
between two consecutive mechanical vibrations (f1 and f2) de-

livered to one fingertip (1–8). The monkeys were asked to report
the results of the decision about which vibrotactile stimulus, f1
or f2, had a higher flutter frequency after a fixed delay period
(3 s) between the end of f2 and the cue that triggered the be-
ginning of the motor report. Sequential decision tasks with a
delayed response require information about f1, temporally stored
in working memory, to be compared with the current infor-
mation from f2 to form a decision of whether f2 > f1 or f2 < f1.
After the discrimination, the subject must keep the decision or
response in working memory for 3 s, and then report the out-
come by pressing one of two push buttons (one for each option:
f2 > f1, f2 < f1) after the postponed response delay (Fig. 1B). Fig.
1A shows that the neuron fired during the f2 period on trials in
which f2 > f1, had a lower firing rate in the postponed response
delay period (4–7 s), and then increased its rate when the signal
was given that the behavioral response could be made (7.0–7.5 s).
Fig. 1B, the MI analysis for the same neuron, shows that there
was information in the firing rate about the response made at the
end of each trial during and just after the f2 period when the
decision could be made, and that the information decreased
during the postponed response delay period and increased again
when the signal for the behavioral response was given.
The single-cell mutual information for the whole set of MPC

neurons is shown in Fig. 2 Top. It is clear that some neurons do
have low information in the postponed response delay period.
These neurons also tend to have low information in the f2 and
response periods. Other neurons have higher amounts of in-
formation in the delay period, and these neurons tend to have
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Fig. 1. Response of a single decision-making neuron recorded in the MPC
during the vibrotactile discrimination task with a postponed decision report
(1). (A) Color map of the firing rate in bins of 200 ms moving in steps of 100
ms. Each square is colored according to its firing rate. (Right) Color map with
firing rate scale in hertz. Each row is the mean activity for a specific pair of
stimuli [f1:f2]. (Left) Labels indicate the pairs of vibrotactile frequencies [f1:
f2] for each trial type. The trials are organized into two blocks: first with f1 <
f2, and then f1 > f2; this makes the decision-making pattern of neuron firing
clear: the neuron fires for decisions when f1 < f2, for a short time after f2,
and close to the time of the response. Only correct trials were included in the
analysis. The time scale beneath the map shows the periods of stimulation
and for reporting the decision. The f1 period is 0.0–0.5 s. The delay period
between the stimuli is 0.5–3.5 s. The f2 period is 3.5–4.0 s. The postponed
response delay period is 4.0–7.0 s. The behavioral response can be started at
a signal given at the time of 7.0 s. (B) The MI between the activity shown in
A and the category of the response with a surrogate correction (200 surro-
gates) (28). The red circles indicate the values that are significant at P < 0.05,
tested with a first-order Monte Carlo method. The shaded rectangles show
the stimulation periods f1 and f2, and the report period. (C) Architecture of
the spiking integrate-and-fire attractor network model of decision making
and of activity in the subsequent delay period. The model consists of two
different neuronal populations: excitatory and inhibitory (interneurons).
There are two types of excitatory population: selective (pool 1 and pool 2 for
each of the two decisions) and nonselective. The recurrent arrows indicate
recurrent connections between the different neurons in a pool, and the
other arrows show the different connections between the groups. The se-
lective pools first receive λ1 = 250 Hz and λ2 = 150 Hz during the red period.
The inputs are then removed during a delay of 3 s in which the same un-
specific input λ = 204 Hz (0.255 Hz for each of 800 synapses onto each
neuron) is injected to both selective pools. For nonselective and inhibitory
neurons, λunsp = 0.
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Fig. 2. Mutual information analyses as a function of time. (Top) Eighty
neurons from the medial premotor cortex. Each row corresponds to a dif-
ferent neuron. (All neurons in the dataset are included for which there were
five or more trials for each condition.) The times when the f2 stimuli are
applied (the delay period and the behavioral response period) are indicated
(Fig. 1). In particular, the f2 period is 3.5–4.0 s. The postponed response delay
period is 4.0–7.0 s. The behavioral response can be started at signal given
at 7.0 s. The mutual information shown is that between the firing rate in
a 200-ms window (sliding every 100 ms) and the response made by the
monkey. The calibration bar shows the information value for a single neu-
ron. (Middle) Eighty neurons in pool 1 of the graded firing rate simulation.
Each row is a single neuron. The rows are sorted by the amount of in-
formation during the decision period, 3.5–4.0 s, which corresponds to the f2
period for the MPC neurons. The delay period is 4–7 s. The equal external
inputs are applied at t = 7.0–7.5 s, labeled recall period. The mutual in-
formation shown is that between the firing rate in a 200-ms sliding window
and the firing in the decision period. (Bottom) SF simulation (conventions as
in Middle).

Martínez-García et al. PNAS | July 12, 2011 | vol. 108 | no. 28 | 11627

N
EU

RO
SC

IE
N
CE



higher information in the f2 and response periods. (The neurons
are ordered according to how much information they have in the
f2 period.) We confirmed that some of these neurons maintain
their firing in the delay period even after a strict Holm–Bon-
ferroni correction for multiple tests (17) described in SI Text, Fig.
S1, and Table S1.
More tellingly, we performed a multiple-cell information anal-

ysis, which tests how the information about the decision increases
with the number of neurons in the sample (10, 18) (Figs. S2 and
S3). We found that with 18 neurons taken at random from those
with low single-cell information content in a 600-ms window in the
delay period (5.2–5.8 s), the average information per neuron was
0.06 bits, and the total information provided was 0.51 bits, with a
90% correct prediction of the decision (Fig. S2). (These 18 neu-
rons had low information even during f2, on average 0.4 bits/
neuron, and we needed 14 such neurons selected at random to
reach 1 bit of information.) If we consider 16 randomly selected
neurons from those with the higher information values shown in
Fig. 3, then the multiple-cell information analysis showed that the
average amount of information for each cell was 0.56 bits in the
same 600-ms window in the delay period, and that with subsets of
cells chosen at random from the 16 cells the information reached
1 bit and 100% correct with four to six cells (Fig. S3). The im-
plication is that with just six MPC cells chosen at random from the
set with higher information values in the delay period shown in
Fig. 2, the animal could do the task perfectly, with 100% correct.
Overall, the single- and multiple-cell information analyses show

that some neurons do contain little information in the delay pe-
riod about which report will be made at the end of the postponed
response delay period, whereas other neurons do maintain sig-
nificant information in the delay period, with four to six suchMPC

neurons being sufficient to account for the correct behavioral
response at the end of the delay period.
We now consider two models that examine the basis of the

recovery of the information at the end of the postponed response
delay period when the behavioral response must be made. The
models have in common the fact that a nonspecific external input
applied at the time when the response can be made after the
delay allows the information to be recovered in the neuronal
firing, as shown in Fig. 2 Top.

Synaptic Facilitation Model. To explain the mechanism underlying
the appearance of information about the decision during and just
after f2, then its disappearance for some neurons in the post-
poned response delay period, and finally its reappearance at the
response time, we made an integrate-and-fire attractor network
model (13, 14, 19) of the decision-making neurons (Fig. 1C) that
is able to reproduce that pattern of activity by incorporating
SF. There are two decision populations, or pools, of neurons,
with pool 1 activated by stimulus f1 via the λ1 inputs and winning
the competition if f1 > f2, and pool 2 activated by stimulus f2 via
the λ2 inputs and winning the competition if f1 < f2. The global
inhibition produced by the inhibitory neurons, together with the
different λ1 and λ2 inputs to pools 1 and 2, provide the basis for
the competition, which is influenced by the randomness of the
spiking times of the neurons to produce probabilistic choice
(10, 20). We also implemented short-term SF (Methods) in which
the calcium-mediated SF makes the residual calcium level grow
(21). Each neuron that spikes increases the residual calcium
level, u, in the presynaptic terminals, which in turn increases the
release probability. The time constant for this process was 2 s.
Details of the implementation and operation of the simulation
are in SI Text.
The results of the SF simulations are illustrated in Fig. 2

Bottom and Fig. 3 Lower. After a period of spontaneous activity
before t = 3.5 s, the decision cues λ1 and λ2 are applied at t =
3.5–4.0 s. If λ1 > λ2, pool 1 corresponding to a decision that f1 >
f2 wins, and its firing rate and the MI between the firing and the
behavioral response increases. In the delay period from 4 to 7 s,
the decision cues are no longer present, and the firing rate and
the MI decrease to close to zero (Figs. 2 and 3). During this delay
period, the synaptic facilitation between the neurons in pool 1
that occurred during f2 in decision pool 1 remains, gradually
decaying (Fig. S4). When a nonspecific external input (λunsp) is
applied at t = 7.0–7.5 s to both pools 1 and 2 to reflect the
moment when the subject receives the stimulus to give its be-
havioral response, then because of the altered synaptic calcium
levels, the firing rate of one of the selective pools increases to the
attractor activity level (Fig. 3), as does its information about the
response to be made (Fig. 4), whereas the firing of the other
selective pool remains with low activity, although a little higher
than the spontaneous firing rate. In this way, the SF model
recalls the selective firing for the correct response even though
there was no firing in the delay period (Figs. 2–4).
It has been shown that as the postponed response delay period

increases, the performance of the subjects decreases (3). We
found that the performance of the SFmodel decreases in a similar
way over periods of up to 3 s (Table S2). However, it is a pre-
diction of the SF model that performance will decay as the short-
term memory period increases much beyond the time constant of
the synaptic facilitation, 2 s. We therefore examine a firing rate
model in the next section that can maintain the memory over
much longer periods than this. Further, it is a property of the SF
model that it can perform the delay task with no firing and no
firing rate information in the delay period, because the memory is
held in the facilitated synaptic weights (Figs. 2–4); however, this
was not found for the MPC neurons, the majority of which do
have some firing during the delay period (Figs. 3 and 4), and re-
tain some information in their firing rates in the delay period (Fig.
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Fig. 3. Rastergrams to illustrate the firing for the MPC neurons (Upper
rastergrams), the graded simulations, and the SF simulations. For the MPC
neurons, the Upper set of rasters is for neurons with firing to f1 < f2, and the
Lower set of rasters is for neurons with firing to f1 > f2. One trial is shown for
each neuron, and the trial selected is one in which that neuron by its high
firing rate encodes the decision. For the graded simulation, each row is the
firing for a different neuron, and all of the data are from one simulation trial,
to show how the rates for the different neurons remain graded throughout
the trial, including when there is some fluctuation of average firing rate in
the delay period. For the synaptic facilitation simulations, one trial is also
shown. The times correspond to those in Fig. 1. The recall period for the MPC
data was when the behavioral response could be initiated, and for the sim-
ulations was when the unspecific input was applied to produce recall.
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2). Moreover, the MPC neurons have a distribution of firing rates
and of the single-cell information in the delay period, with some
neurons maintaining their firing rates and firing rate-related in-
formation in the delay period well, and others less so (Figs. 2–4).
We therefore analyzed a different model of the delay-related
firing, which has a graded distribution of firing rates.

Graded Firing Rate Attractor Network Model of the Activity in the
Delay Period After the Decision. An integrate-and-fire decision-
making network was implemented in the way just described, but
without any synaptic facilitation, and with graded firing rates.
The gradation to the firing rates was implemented by replacing
the equal and strong synaptic weights (w+) that connect the
neurons within each specific decision-making pool with an ex-
ponentially graded set of synaptic weights. The graded synaptic
weights had the same average value (w+ = 2.1), but some were
considerably stronger, and the distribution decreased exponen-
tially to a value of 1, as described elsewhere (16) and in SI Text.
Graded firing rate distributions are not usually examined in these
attractor decision-making networks because the mean field
analysis used to set the network parameters requires the same
value for the weights within a pool. However, because neurons in
the brain typically have graded firing rate distributions, fre-
quently close to exponential (10, 22), we have investigated the
properties of decision-making networks with graded firing rate
representations (16). Here, we investigate the activity of a similar
network in a short-term memory period after a decision, and
analyze whether the firing rate distribution in the delay period is
similar to that found for MPC neurons in that some neurons
encode little information in their firing rates, and others more
information. For these graded simulations, there was a pre-
decision cue period of spontaneous firing; the decision cues were
applied at 3.5–4.0 s, and in this period the decision was made;
there was a 3-s delay period from 4 to 7 s, and then a nonspecific
input was applied equally to the two decision pools (1 and 2)
from 7.0 to 7.5 s, to investigate whether just pool 1, which had
reached the decision during 3.5–4.0 s, could be restored to its
high and selective activity with respect to pool 2 when the be-
havioral response was required.
The performance of the graded firing rate network for neurons

in the winning pool (pool 1) is illustrated by rastergrams in Fig. 3.
Some neurons continue firing in the delay period, whereas others
decrease their rates considerably, to only slightly above the

spontaneous rate shown in the spontaneous period. This pattern
is qualitatively similar to that found for the MPC neurons (Fig. 3,
Upper). Fig. 4 shows that the firing rates for these simulations are
indeed graded in the delay period, and that, as is expected, the
firing rates in the delay period are monotonically related to the
firing rate in the decision period (3.5–4.0 s). Fig. 4 also shows
that the MPC neurons have graded rates in the delay period, as
well as in the f2 decision period. Fig. 2 shows that the graded
firing rate simulations have graded information conveyed by the
different neurons, with some with relatively high firing rate in-
formation, and others with much lower firing rate information, in
the delay period. This is qualitatively similar to the MPC neu-
rons’ information measures throughout the task, although as the
MPC neurons are noisier from trial to trial than the graded
simulation, the actual magnitude of the information is less for
the MPC neurons than for the graded simulations.
Of particular interest and theoretical significance is that the

graded simulations recover the information when the external
stimulus is applied nonselectively (i.e., equally) to pools 1 and 2
at t = 7.0–7.5 s. The concept here is that with low inputs during
the delay period, the neurons overall have less activity than in the
decision period when the decision cues are applied. However,
the correct decision pools can maintain the identity of the de-
cision by having just some neurons firing at a sufficient rate to
keep the attractor active by the feedback of the firing rates
through the graded synaptic weights. The neurons with the low
weights in the graded distribution may have very little firing in
the delay period, and indeed may be firing at a rate insufficient to
maintain the attractor themselves in the delay period (as shown
by further simulations). However, when the nonselective external
signal is applied at t= 7.0–7.5 s equally to neurons in pools 1 and
2, the neurons in pool 1 that are already active are stimulated
into higher firing, which has the effect of recruiting through the
intrapool recurrent synaptic connections the other lower-firing
neurons in pool 1, and also, by competition through the in-
hibitory interneurons, keeping the neurons in pool 2 at low ac-
tivity. This results in the recovery of information during t = 7.0–
7.7 s, illustrated in Fig. 2, which models what is shown for the
MPC neurons in Fig. 2. (The actual process at the time of the
application of the external stimulus at t = 7.0–7.5 s can also be
viewed as a decision-making process in which λ1 = λ2, but there
is a bias to λ1 from the greater activity left in pool 1 than in pool
2 at the end of the delay period.)
In summary, the graded firing rate model of decision making

has properties that capture many of the properties of the MPC
neurons (Figs. 2–4). These properties include the maintenance
of low but significant information in the delay period, which is
graded according to the graded firing rates, and the restoration
of the information when it needs to be recalled, by a nonselective
external input in the case of the network. This operation is dif-
ferent from that of the synaptic facilitation model, which can
hold the memory in the synaptic facilitation with no firing rate or
information evident in the delay period (Figs. 2–4), and which
has only a limited short-term memory period.

Discussion
In this paper we have shown using mutual information analyses
that though some MPC neurons lose their information about the
decision in a subsequent delay period before the behavioral re-
sponse can be made, some neurons maintain that information,
although at a lower level and with lower firing rates than during
the decision period (f2) (Figs. 2–4). We have shown previously
that an integrate-and-fire decision-making attractor network can
account for the decision-making itself in this task (14), and show
here that the same network can also account for the memory of
the decision in the subsequent delay period before the behavioral
response can be made. This use of the same network to make the
decision and to hold the decision in a short-term memory is a

Fig. 4. The firing rate during the delay period (ordinate) vs. the firing rate
in the decision period (abscissa). Each point represents one neuron. (Upper)
MPC neurons. Scatterplots show the rates for two different 0.5-s time win-
dows in the delay period. (Lower Left) SF simulations. (Lower Right) Graded
(G) firing rate simulations. The blue line shows where an equal response
would lie. Red lines show linear fits to the data.

Martínez-García et al. PNAS | July 12, 2011 | vol. 108 | no. 28 | 11629

N
EU

RO
SC

IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1108137108/-/DCSupplemental/pnas.201108137SI.pdf?targetid=nameddest=STXT


good and evolutionarily efficient property of this model of de-
cision making (10, 20).
The two mechanisms we model for the details of how these

processes are implemented have different advantages. The SF
mechanism is energy efficient, for it can, as we show here,
maintain the evidence of a previous decision even with no neu-
ronal firing (Figs. 2–4); however, it is limited by the maximum
duration of its short-term memory, set by the time constant of the
synaptic facilitation, which is ∼1–2 s (13, 23). The SF model can
be made to have, as in the MPC (Figs. 2–4) and many other brain
areas (3, 10, 24, 25), some continuing firing in the delay period
by increasing the nonspecific inputs to the neurons in the delay
period. In the MPC, in which some neurons have low single-cell
information levels at some point in the delay, the multiple-cell
information shows that a group of as few as seven neurons in the
group with most single-cell loss of information never fall below
0.42 bits, allowing 90% correct performance in the delay period
(SI Text). The graded firing model of decision making and sub-
sequent short-term memory for the decision described here shows
that low levels of firing in some neurons in an attractor population
with graded firing rates can enable the attractor to be maintained,
and later restored, even when some of the neurons in the graded
representation have low activity in the delay period, and corre-
spondingly low MI values. (In the graded firing rate simulations
analyzed, we took the parameters—in particular the inputs being
applied equally to pools 1 and 2 in the delay period—down to
levels that just enabled the attractor to be maintained.) Because
neurons in the MPC and in many other cortical areas (10) have
graded representations, ours is an accurate model of the neuro-
physiological mechanism. And by using firing rates, the graded
firing rate model can maintain its firing rates for potentially long
periods, of tens of seconds.
In practice, it could well be that the cortex uses both mecha-

nisms described here in the same network. That is, the level of
firing that is required in a small proportion of neurons in the
graded firing rate attractor population may be sufficient to pro-
duce some synaptic facilitation, and thus synaptic facilitation
may be involved in the cortex in these types of networks. In this
mixed scenario, however, the mechanism relies more on the
graded nature of the firing rate representations, and for the
attractors to be maintained by low firing rates of at least some
neurons, especially when the memory must be for more than a
few seconds.
A synaptic facilitationmechanism has been proposed previously

to help with the memory of f1 during the delay between the stimuli
f1 and f2 in a sequential decision-making task (14), but has not
been suggested before for implementing the memory in a post-
poned decision task.We have shown here that synaptic facilitation
provides a possible mechanism for remembering the decision
during the delay period before the decision can be reported.
In this paper we used MI to quantify the relationship between

the firing of the MPC decision-making neurons during different
parts of the task, and the decision taken when f2 is applied. MI
analysis is useful because it takes into account the variability of
the firing from trial to trial, and at different times within a trial.
The MI analysis shows that the information about the response
is not significant until the end of the second stimulus (by which
time f1 and f2 have been presented; Fig. 2). Immediately after
f2, the analysis shows an association between the firing rates and
the later response of the monkey. Then for some neurons (Fig.
2), the information becomes low during the delay period only to
come back again at the response time. At the report time the MI
becomes significant as a consequence of the large difference in
the firing rates of the two selective populations. The multiple-cell
information analysis is helpful in showing that if a population of
neurons with low single-cell information values in the delay pe-
riod are considered together, then because the information from
the different neurons adds (Fig. S2), there is in fact some in-

formation provided even by these neurons in the delay period.
The MI analysis also highlights that it is the high firing rate neu-
rons that encode much information, as the information measure
reflects the difference in the firing rates—that is, the number of
spikes in a short time window between the two populations being
considered (10, 26).
The relative contribution of the two mechanisms, synaptic

facilitation vs. restoration of firing in the whole set from the
firing in a subset with graded activity, could be investigated ex-
perimentally by using longer delay periods before the behavioral
response can be made. The synaptic facilitation mechanism with
its time constant of 2 s would predict very poor performance (by
the neurons and behaviorally) if the delay period is increased to
5 s. In contrast, the mechanism that involves restoration of firing
in the whole set of neurons from the firing remaining in a subset
could in principle restore the firing in all of the neurons in the
appropriate decision pool after much longer periods.
Finally, we note that in the first delay period, between f1 and f2,

a sensory representation of f1 must be stored. In the postponed
response delay period, the result of the decision must be stored,
and we show in this paper that it is natural for the decision-
making network to also store the results of the decision, for it is
an attractor decision-making mechanism that we analyze. The
networks that implement these memories must be different, and
are shown to be different by the fact that different neuronal
populations are engaged by these two processes (1–8).

Methods
Discrimination Task. Stimuli were delivered to the skin of the distal segment of
one digit of the right, restrained hand of amonkey via a computer-controlled
stimulator (2-mm round tip; BME Systems). The initial indentation was 500
μm. Vibrotactile stimuli were trains of mechanical sinusoids. Stimulation
amplitudes were adjusted to produce equal subjective effects (3). On each
trial, two vibrotactile stimuli (f1 and f2) were delivered consecutively, sepa-
rated by a fixed interstimulus delay period of 3 s. The monkey was asked to
report discrimination of the two stimuli after a fixed delay period of 3 s
between the end of f2 and a cue signal (provided at 7 s; Fig. 1) that triggered
the beginning of the motor report. In the correct trials, the animal was
rewarded with a drop of liquid. Discrimination was reported by pressing one
of two push buttons (see refs. 1–8 for more information).

Model. The decision-making model is illustrated in Fig. 1C and is described in
detail in SI Text. In the SF version, to implement a short-term memory trace
that did not depend on maintained firing rates, we used calcium-mediated
SF (13–15). All of the presynaptic spikes that arrive at the presynaptic ter-
minals increase the accumulation of intracellular calcium, which increases
release probability. These dynamics are influenced by the parameter u (which
reflects the residual calcium level) as described in SI Text and elsewhere (13).
The time constant of the synaptic facilitation is adjusted by the parameter
τF. The values for the baseline utilization factor U (0.15) and for τF (2 s) are
similar to values reported experimentally and used elsewhere (13, 23).

The graded firing rate model was implemented by setting the synaptic
weights of the intrapool synaptic connections to an exponentially graded set
of synaptic weights, as described in SI Text and elsewhere (16). No synaptic
facilitation was used.

Information Theoretic Analysis. We calculated the single-cell MI between the
neuronal firing rate measured in a 200-ms time window slid along the time
axis in units of 100 ms, and the behavioral response. The MI was calculated as

IðS;RÞ ¼
X

s;r

pðs; rÞlog2ðpðs; rÞ=ðpðsÞpðrÞÞÞ;

where p(s), p(r) are themarginal distributions of the variables, and p(s, r) is the
joint distribution (11). Because the MI estimate is subject to statistical errors,
which can lead to an overestimate of the information, we corrected the
information estimates using a first-order Monte Carlo method described in
SI Text (10, 27). This method also leads to a test of the statistical significance
of the corrected MI between firing rates and category (28), as described
in SI Text.
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