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Abstract

Recent neurophysiological experiments have demonstrated a remarkable effect of attention on the underlying neural
activity that suggests for the first time that information encoding is indeed actively influenced by attention. Single cell
recordings show that attention reduces both the neural variability and correlations in the attended condition with respect
to the non-attended one. This reduction of variability and redundancy enhances the information associated with the
detection and further processing of the attended stimulus. Beyond the attentional paradigm, the local activity in a neural
circuit can be modulated in a number of ways, leading to the general question of understanding how the activity of such
circuits is sensitive to these relatively small modulations. Here, using an analytically tractable neural network model, we
demonstrate how this enhancement of information emerges when excitatory and inhibitory synaptic currents are balanced.
In particular, we show that the network encoding sensitivity -as measured by the Fisher information- is maximized at the
exact balance. Furthermore, we find a similar result for a more realistic spiking neural network model. As the regime of
balanced inputs has been experimentally observed, these results suggest that this regime is functionally important from an
information encoding standpoint.
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Introduction

Cognitive behavior requires an efficient selection of relevant

information from the enormous amount of sensory information

continuously flowing into the brain. The perceptual system

performs this selective filtering process by relying on attentional

mechanisms by which a behaviorally relevant stimulus in the

environment is enhanced relative to other irrelevant distractors.

During the last years, many experiments have found as neuronal

correlates of attention a modulation of the firing rate activity (see

e.g. [1–5]). More recently, experiments have shown that attention

affects the neural variability –as measured by the Fano factor- and

correlations over trials [6–8]. In these experiments, single cells in

V4 were recorded in awake behaving monkeys when one stimulus

in the neuron’s receptive field was behaviorally attended or non-

attended. Both studies reported a relatively small but significant

decrease of both the Fano factor (mean-normalized variance of the

neural spike counts over trials) and neuronal correlations in the

attended condition with respect to the non-attended one.

Additionally, several studies across a variety of species, cortical

areas, brain states and stimulus conditions have found that

stimulus onset generally reduces neural variability [9]. These

attention induced reductions suggest an enhancement of the

information necessary to select and further process the relevant

stimulus. Indeed, these reductions improve the signal-to-noise ratio

and eliminate redundancy, both crucial features for enhancing the

encoding of information.

As attention just modulates neural activity, it is believed to be

conveyed to a given neural circuit by a relatively small signal.

Beyond the attentional paradigm, which is well suited for experi-

mental investigation, the local activity in a neural circuit can be

modulated in a number of ways. Therefore, a general question is to

understand how the activity of such circuits depends on such

modulations or, in other words, how sensitive the activity is.

In this paper we study, first for an analytically tractable model

and then with simulations of a biophysical model, the conditions

under which a neuronal network encodes information with maximal

sensitivity. We study the encoding sensitivity from an information-

theoretical point of view by using the Fisher information. We

demonstrate analytically that the encoding sensitivity is maximized

in the balanced input regime and confirm this result for the

biophysical model. The balanced input regime is supported by

experimental observations in vitro [10] and in vivo [11,12]. In turn,

we find that the variability also maximally decreases around the

balance. In conclusion, the present results suggest that the balanced

regime allows the best encoding sensitivity.

Results

An Analytically Solvable Stochastic Binary Neural
Network Model

To illustrate this basic phenomenon we will present an analytically

tractable neural network model, a network of stochastic binary

neurons –or an Ising spin model in statistical physics [13], which
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allows to derive analytically the variability, measured by the Fano

factor, and the sensitivity to an external stimulation, measured by the

Fisher information. We then demonstrate that the sensitivity to an

external information is maximal in the regime where there is a

balance between excitatory and inhibitory afferent inputs. Then, we

show that this theoretical prediction extends to the case of a

biophysically realistic neural network model of spiking neurons with

AMPA, NMDA and GABA synapses.

A stochastic binary neuron takes the output value Si~1 with

probability pi and the value Si~0 with probability 1{pi. The

probability pi is given by

pi~
1

1ze{ehi
~g(hi), ð1Þ

where hi denotes the total input to this neuron. In such neurons,

the stochasticity is modeled by ‘‘thermal’’ fluctuations (the

parameter e in Equation 1 denoting an inverse temperature), a

convenient way to represent the influence of noise on this neuron.

In statistical physics, defining such probabilities defines a Glauber

dynamics [14], which provides a way to calculate the evolution of

the network state. Note that, even if our present results do not

necessitate the explicit use of the Glauber dynamics, this evolution

should consider asynchronous updating of the neurons.

The network we consider (see Figure 1) consists of K mutually

and recurrently inhibiting populations of N neurons with weigth

{wI=N. Each population is also recurrently connected with

excitatory weigth wz=N , wz being denoted the cohesion level.

The network is fully connected. The population k receives the

external stimulation lk. As a special case, we will consider that

population 1 encodes a target stimulation, the input comprising

and external stimulation l plus a top-down extra input D
(l1~lzD), whereas all other populations encode distractors and

receive only the stimulation l(lk~l, k~2,:::,K ).

Let us denote by Ski the state of the neuron i in population k.

The Glauber dynamics of this network can be described by the

following equations

Ski~1 with probability pki

Ski~0 with probability 1{pki

�
ð2Þ

where pki is given by

pki~g
wz

N

X
j

Skj{
wI

N

X
l=k

X
j

Sljzlk{H

 !
: ð3Þ

Note that, due to the connectivity considered here, these

probabilities are identical across each population. Let us further

label a given configuration of all the KN neurons by a superindex

a. For a symmetric connectivity -as here, at large times, the

probability of finding the system in a specific state Sa is given by

the Boltzmann-Gibbs distribution

Pa~
e{eHa

Z
, ð4Þ

where Z is the partition function defined by

Z~
X

a

e{eHa ð5Þ

and Ha is the energy function –of the configuration a- given by

Ha~{
X

k

(lk{H)
X

i

Sa
ki{

1

2

wz

N

X
k

X
i,j

Sa
kiS

a
kj

z
1

2

wI

N

X
kƒl

X
i,j

Sa
kiS

a
lj

ð6Þ

The averaged mean activity in each population k is defined by:

mk~SSkiT~
X

a

Pa Sa
ki ð7Þ

Deriving the mean-field approximation (see [13]), we can write the

fixed point equations describing the averaged mean population

activity as

mk~g(wzmk{wI

X
l

mlzlk{H), ð8Þ

for k~1,:::,K . For a given set of parameters (wz,wI ,H), and

inputs (l1,:::,lK ), these K nonlinear equations determine the K

unknowns wk.

The averaged second moment of a population can be shown to

be given by

SSki
2T~mk ð9Þ

and consequently the Fano factor, defined as the variance over the

mean of the population activity, is

FFk~
S(Ski{SSkiT)2T

SSkiT
~1{mk ð10Þ

To characterize the encoding sensitivity of the network, we use the

Fisher information. This information theoretic quantity describes

Figure 1. Architecture of the stochastic binary neurons network with Glauber dynamics. (See text for details).
doi:10.1371/journal.pone.0030723.g001
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the amount of information that an observable random variable X
carries about a given parameter upon which the probability of X
depends. Moreover, for any unbiased estimator of this parameter,

its variance is always greater than the inverse of the Fisher

information, a lower bound called the Cramer-Rao bound.

Therefore, the higher the Fisher information is, the better one

can estimate the given parameter from the observation of the

variable X . Here, we will study how sensitively the network

encodes l1. For a network of stochastic neurons whose distribution

of states follows the Boltzmann-Gibbs distribution, the Fisher

information, defined by

J(l1)~S
L

Ll1

ln Pa

� �2

T, ð11Þ

can be rewritten

J(l1)~S
LHa

Ll1

{S
LHa

Ll1

T
� �2

T ð12Þ

which, after some straightforward algebra, is expressed by

J(l1)~e2N(m1{m2
1) ð13Þ

The maximum of the Fisher information with respect to wI is

given by the condition:

dJ(l1)

dwI

~0 ð14Þ

Inserting Equation 13 into Equation 14, the possible solutions are

m1~1=2 and dm1=dwI~0. However, the second solution is

possible only for high cohesion level wz, a case we do not consider

here. Using Equation 8, we finally find:

wzm1{wI

X
l

mlzl1~H, ð15Þ

which means that the Fisher information is maximal when the

excitatory and inhibitory synaptic currents are exactly balanced in

the first population.

In the following, and in our simulations, we have considered the

simpler symmetric input lk~l, adding a bias D to l1 (l1~lzD)

to consider the effect of a top-down input, or an attentional input

when the stimulus to which the first population is selective is

attended. The symmetric input case is interesting because this is

the extreme case where the network sensitivity to a bias can be

studied while all selective populations have the same activity. We

used the following parameter values: wz~2:6,e~1,l~1:7,H~2.

When K~2, the balanced competition occurs for wI~1, and for

K~5 it occurs for wI~0:4 (see Equation 15). Note that, for these

parameters, the fixed point obtained from the system of Equations

8 is symmetrical (mk~m0 for all k) when D~0. Figure 2 shows the

balance condition, the Fano factor reduction (for D~0:05) and the

Fisher information (for D~0 and scaled down by e2N) as a

function of the inhibition level for both values of K . We note that

the Fano factor reduction peaks around the point where the input

is balanced. In Appendix S1, we demonstrate analytically that the

Fano factor reduction peaks around the point where the Fisher

information peaks. In conclusion, using a network of stochastic

neurons, we were able to demonstrate analytically that the

maximal sensitivity, as measured by the Fisher information, occurs

exactly when the excitatory and inhibitory synaptic currents are

balanced.

A Biophysically Realistic Spiking Neural Network Model
We now study here a biophysically realistic neural network

model [15]. The model uses integrate-and-fire neurons with

excitatory (AMPA and NMDA) and inhibitory (GABA-A) synaptic

receptor types. It is formulated and analyzed in the theoretical

framework of attractor networks introduced in the seminal work of

Amit [16]. An attractor network is a neural network whose

dynamical state has the tendency to settle into a stable firing

pattern, which eventually destabilizes under the effect of noise. Its

behavior can be formally described by dynamical systems theory

(see Materials and Methods).

As in the previous model, the network has K selective excitatory

neural pools. We consider the case where K stimuli are presented

simultaneously and when an external bias is applied to the first

population. For attention, this bias models the attentional signal

that this population receives when the corresponding stimulus is

attended, as suggested by previous studies [3,17]. For K~2, this

corresponds to the case where 2 stimuli are presented simulta-

neously in a neuron’s receptive field and when attention is

allocated to only one of them, this one being the target and the

other one the distractor. This situation is referred to lead to

‘‘biased competition’’ [1,2]. Each simulation started with a period

of 500 ms (for network activity stabilization), followed by a period

of 1000 ms where an identical stimulus was presented to all

selective populations, represented by the corresponding extra rates

lk~200Hz,. As before, in this network state, we are interested in

the sensitivity of the network activity to a small modulatory input -

or bias- applied to population 1, and implemented here by adding

an extra input rate D to this population (i.e. l1~200zDHz). We

have considered both the case of a very small bias (D almost 0) and

the case of of Dw0 but small. The spiking activity was averaged

over 4000 trials, initialized with different random seeds.

Again, the sensitivity of the network activity to the external bias

D is evaluated using the Fisher information. We estimate this

quantity numerically with respect to the underlying synaptic

currents balance, and right from its definition, involving the spike

count distribution (see Materials and Methods). Figure 3B shows,

for several values of the bias D, its evolution as a function of the

inhibition level. Comparing with the mean input current to which

is subtracted the threshold current (see Figure 3A), the Fisher

information clearly peaks around input balance, which occurs

around wI~1:05. For lower inhibition levels, the Fisher

information tends to a plateau, and for higher ones, it tends to

zero, as the network tends to silence. Although we took quite large

values of the bias (D~0,5,10 Hz) and a large number of trials,

noise in the data still prevents to distinguish Fisher information for

different values of the bias D.

To further investigate the behavior of the Fisher information,

we have derived an approximate analytical expression (see

Appendix S2). First, for high inhibition values, neurons receive a

subthreshold current (see Figure 3A), and their firing tends to

become Poissonian. In this regime, we evaluate analytically the

Fisher information from the Poisson spike count distribution.

Second, for low inhibition values, neurons have a current well

above the threshold (see Figure 3A), and the spike count

distribution can be well fitted by a Gaussian, whose mean is

given by the mean spike count m D,wIð Þ and variance by v D,wIð Þ.
The Fisher information is also evaluated analytically in this case.

Finally, it can be shown that these two formulas have the same

form (see Appendix S2), namely

Balanced Input Allows Optimal Encoding
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Jfit D,wIð Þ~ 1

v

Lm

LD

� �2

: ð16Þ

In Figure 4 we plot, with respect to wI , m, Lm=LD, v and compare

the estimated Fisher information with Jfit, which is shown to fit very

well for all values of the inhibition level wI . Finally, the Fisher

information is found to peak because Lm=LD peaks around input

balance. In turn, this quantity peaks because the mean spike count m
has, with respect to wI , a maximum (absolute) slope around balance.

Discussion

How attention increases the encoding of the information

necessary for the selection of the relevant stimulus? More

generally, how the activity in a local neural circuit changes in

response to a modulatory input? Here, using an analytically

tractable model, we rigorously investigated under which condi-

tions this modulation is better detected. Using an information-

theoretic measure, the Fisher information, we were able to show

that the maximum sensitivity of the system occurs when the

excitatory and inhibitory synaptic currents are balanced. Note that

logically, but not trivially, this maximum also corresponds to the

maximum slope of the single neuron response function. Further-

more, we found a similar conclusion using a more realistic model.

The balanced input regime has received quite a lot of experimental

and theoretical support. Experimental observations in vitro [10] and

in vivo [11,12] have revealed that the ratio of excitatory and inhibitory

input conductances remains remarkably stable over time, within and

across neurons in active local networks, either in a balanced way or

favoring inhibition. On the theoretical side, using statistical physics

tools, Buice and Cowan [18] have shown how balanced excitation and

inhibition and criticality are related. Furthermore, they analyze the

advantage of having a system of spiking neurons at criticality and

present numerous empirical evidences of cortical systems working at

this type of critical point. Essentially, they discuss the fact that, at this

critical balanced state, the system is mainly driven by fluctuations and

therefore variability and correlations are much more sensitive to

external influences, conclusions which are consistent with ours. Other

theoretical studies [19,15,20] have indicated that the balance input

regime is convenient to sustain a stable spontaneous state, and allows

rapid transitions between relatively stable network states, which can

modulate the neural responsiveness in a behaviorally relevant manner.

One classical example is attention: a balanced network is suitable to

mediate biased competition [4,3], i.e. it is particularly able to amplify

the rate modulations induced by modest external bottom-up or top-

down attentional biases.

Materials and Methods

The biophysically realistic model uses integrate-and-fire neu-

rons with excitatory (AMPA and NMDA) and inhibitory (GABA-

A) synaptic receptor types.

Figure 2. Stochastic binary neurons network behavior as a function of the inhibition level wI . Current balance (top), Fano factor
reduction (middle) (for a bias D~0:05) and Fisher information scaled down by e2N (for a bias D~0) (bottom). (Left) Case of K~2 selective
populations, for which input balance occurs at wI ~1 (dashed line). (Right) Case of K~5 selective populations, for which input balance occurs at
wI ~0:4 (dashed line). All results are analytical.
doi:10.1371/journal.pone.0030723.g002

Balanced Input Allows Optimal Encoding
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Neurons and Synapses
The spiking activity of neurons in the network is described by an

integrate-and-fire model. Integrate-and-fire (IF) neurons are point-like

elements, whose dynamical state is described by their membrane

potential V (t). An IF neuron can be described by a basic circuit con-

sisting of a cell membrane capacitance Cm in parallel with a membrane

resistance Rm, driven by input currents coming from connected

neurons. Hence, the subthreshold dynamics of the membrane potential

of each neuron in the network is given by the following equation:

Cm
dV (t)

dt
~{gm(V (t){VL){

½gAMPA,ext(V (t){VE)
XNext

j~1

sAMPA,ext
j (t)z

zgAMPA,rec(V (t){VE)
XNE

j~1

wjs
AMPA,rec
j (t)z

z
gNMDA,rec(V (t){VE)

1zce{bV (t)

XNE

j~1

wjs
NMDA,rec
j (t)z

zgGABA(V (t){VI )
XNI

j~1

wjs
GABA
j (t)�

ð17Þ

where gm~1=Rm is the membrane leak conductance, VL is the

resting potential, and Isyn is the synaptic current. The membrane

time constant is defined by tm~Cm=gm. When the voltage across

the membrane reaches a given threshold Vthr, the neuron generates

a spike which is then transmitted to other neurons and the

membrane potential is instantaneously reset to Vreset and main-

tained there for a refractory time tref during which the neuron is

unable to produce further spikes. The spikes arriving to a given

neural synapse produce an input to the neuron which induce post-

synaptic excitatory or inhibitory potentials (through a low-pass filter

formed by the membrane and synaptic time constants). In Equation

17, gAMPA,ext, gAMPA,rec, gNMDA,rec, and gGABA are the synaptic

conductances, and VE , VI the excitatory and inhibitory reversal

potentials, respectively. The dimensionless parameters wj of the

connections are the synaptic weights. The NMDA currents are

voltage dependent and they are modulated by intracellular

magnesium concentration. The gating variables si
j(t)are the

fractions of open channels of neurons and they are given by:

dsAMPA,ext
j (t)

dt
~{

sAMPA,ext
j (t)

tAMPA

z
X

k

d(t{tk
j ), ð18Þ

Figure 3. Spiking neurons network behavior as a function of the
inhibition level wI . (A) Mean synaptic current and (B) estimated Fisher
information for the population receiving an extra bias D. This quantity
measures the network activity sensitivity to the bias D and is calculated at
bias D~0,5,10 Hz (black, blue and green curves, respectively). The Fisher
information peaks around the excitatory and inhibitory synaptic currents
balance. Due to noise in the data, it is almost impossible to distinguish the
different curves.
doi:10.1371/journal.pone.0030723.g003

Figure 4. Fisher information behavior for the spiking neurons
network as a function of the inhibition level wI . (A) Mean spike
count m, (B) its derivative with respect to the bias, Lm=LD, (C) the spike
count variance v and (D) the estimated Fisher information (red) and its
analytical fit Jfit (dashed black). The analytical fit works very well,
showing that the Fisher information peaks around input balance
because Lm=LD also peaks there. In turn, this quantity peaks because
the mean spike count m has, with respect to wI , a maximum (absolute)
slope around balance.
doi:10.1371/journal.pone.0030723.g004
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dsAMPA,rec
j (t)

dt
~{

sAMPA,rec
j (t)

tAMPA

z
X

k

d(t{tk
j ), ð19Þ

dsNMDA,rec
j (t)

dt
~{

sNMDA,rec
j (t)

tNMDA,decay

zaxj(t)(1{sNMDA,rec
j (t)), ð20Þ

dxNMDA,rec
j (t)

dt
~{

xNMDA,rec
j (t)

tNMDA,rise

z
X

k

d(t{tk
j ), ð21Þ

dsGABA
j (t)

dt
~{

sGABA
j (t)

tGABA

z
X

k

d(t{tk
j ): ð22Þ

The sums over the index k represent all the spikes emitted by the

presynaptic neuron j (at times tk
j ). In Equations 18–22, tNMDA,rise

and tNMDA,decay are the rise and decays times for the NMDA

synapses, and tAMPA and tGABA the decay times for AMPA and

GABA synapses. The rise times of both AMPA and GABA synaptic

currents are neglected because they are short (,1 ms). The values of

the constant parameters and default values of the free parameters

used in the simulations are displayed in Table 1.

Neural Network
The network consists of N~1000 interacting neurons, where

NE~0:8N are excitatory (pyramidal) cells and NI~0:2N are

inhibitory cells (interneurons), consistent with the neurophysiolog-

ically observed proportions [21]. We use an attractor network

where neurons are organized into a discrete set of populations.

There are three different types of populations, namely: 1) the

inhibitory population, 2) the excitatory non-selective populations

and 3) the excitatory selective populations. The inhibitory

population is made of the inhibitory neurons in the modeled

brain area and mediates competition in the attractor network by

distributing a global inhibitory signal. The non-selective popula-

tion Ens is composed of all excitatory neurons that are not

receiving any specific external input and which therefore provide a

background level of excitation. The remaining excitatory neurons

are clustered in K different specific populations Ek (K~5 in the

present simulations). Each contains fNE neurons (f ~0:1 in the

present simulations) which are sensitive to a specific external

stimulus. The network is fully connected, meaning that each

neuron in the network receives NE excitatory and NI inhibitory

synaptic contacts. The connections strengths between and within

the populations are determined by dimensionless weights wj . We

assume that the connections are already formed, e.g. by earlier

self-organization mechanisms, as if they were established by

Hebbian learning, with the coupling between two neurons being

strong if their activities are correlated and weak if they are

anticorrelated. The recurrent self-excitation within each selective

population Ek is given by the weight wz (wzw1), which is called

the cohesion level, and the weaker connection between them by

the weight w{(w{v1). The synaptic efficacy w{ depends on wz

by the relation w{~1{f (wz{1)=(1{f ): this relation ensures

that the average excitatory synaptic efficacy remains constant

when wz varies. Neurons in the inhibitory population are

mutually connected with an intermediate weight w~1. These

neurons are also connected with all excitatory neurons with the

same intermediate weight, which for excitatory-to-inhibitory

connections is w~1 and, for inhibitory-to-excitatory connections

is denoted wI , called the inhibition level. Neurons in each

excitatory population Ek are connected to neurons in the

population Ens with a feedforward and feedback synaptic weights

w~1 and w{, respectively. The remaining connections are all set

to the baseline value, i.e. to 1.

All neurons in the network always receive an external

background input from Next external neurons emitting uncorre-

lated Poisson spike trains at rate next,0. The resulting spike train is

still a Poisson spike train, with rate n0~Nextnext,0. More

specifically, and for all neurons inside a given population p, the

resulting spike train is assumed to have a time-varying rate np
ext(t),

governed by

tn

dv
p
ext tð Þ
dt

~{ v
p
ext tð Þ{v0ð Þ~sv

ffiffiffiffiffiffiffi
2tn

p
np tð Þ ð23Þ

where tn~30ms, n0~2:4kHz, sn~0:21kHz is the standard

deviation of np
ext(t) and np(t) is a normalized Gaussian white noise.

Due to noise, negative values of n
p
ext(t) that could arise are rectified

Table 1. Neural and synaptic parameters.

Excitatory neurons Inhibitory neurons Synapses

NE 800 neurons NI 200 neurons VE 0 mV

Cm 0.5 nF Cm 0.2 nF VI 270 mV

gm 25 nS gm 20 nS tAMPA 2 ms

VL 270 mV VL 270 mV tNMDA,rise 2 ms

Vthr 250 mV Vthr 250 mV tNMDA,decay 100 ms

Vreset 255 mV Vreset 255 mV tGABA 10 ms

tref 1 ms tref 1 ms a 0.5 ms21

gAMPA,ext 2.08 nS gAMPA,ext 1.62 nS b 0.062 mV21

gAMPA,rec 0.104 nS gAMPA,rec 0.081 nS c 0.2801

gNMDA 0.327 nS gNMDA 0.258 nS wz 1.9

gGABA 1.25 nS gGABA 0.973 nS

Parameter values for the spiking neural network model. In the numerical simulations, the parameters entering in the definition of neuron and synaptic models take the
given values (See Materials and Methods).
doi:10.1371/journal.pone.0030723.t001
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to zero. These input rate fluctuations represent the noisy

fluctuations that are typically observed in vivo. Additionally,

neurons in a specific selective population Ek receive other inputs

when an external stimulus is applied (l) or a bias (D) to that

population. These inputs are specified by adding a corresponding

rate to the rate of the background Poissonian input spike train.

Fisher Information
For the spiking network simulations, to measure how sensitively

the activity of one population receiving a stimulus with an extra

bias can be detected, we calculated the amount of information that

the neural spike counts (c) in this population carry about the bias

D. To evaluate the distribution p(c,D) for a given D, we use the

spike counts for a time window of 500 ms for the 80 neurons in the

attended population and over 4000 trials. We estimated

numerically the Fisher information from its definition

J(D)~S
L

LD
ln p(c,D)

� �2

T ð24Þ

by calculating first the empirical distributions p(c,D) for different

values of D, and calculating the derivative with respect to D using a

centered discretization formula (we used a 10 Hz discretization

step to ensure enough precision). In Figure 4, we evaluate

numerically the Fisher information as a function of wInh in the

limit of infinitesimal bias (i.e. D~0 Hz), the sensitivity being non-

zero in this limit, and for positive values (D~2:5,5 Hz).

Supporting Information

Appendix S1 For the stochastic binary neurons network,
we demonstrate analytically in this appendix why the
Fano factor reduction is maximum around the same
value that the Fisher information is maximum, which is
for a balanced input.
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Appendix S2 To better understand the behavior of the
Fisher information with respect to parameters, we
derive in this appendix approximate analytical expres-
sions.

(DOC)
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